Материалы по истории астрономии

На правах рекламы:

https://oyster.market очищенныи кальмар купить в москве.

Адаптивная оптика

Система адаптивной оптики — это автоматическая система, предназначенная для исправления в реальном времени атмосферных искажений изображения, построенного телескопом. Сейчас системы адаптивной оптики применяются в оптических и инфракрасных телескопах наземного базирования для увеличения четкости изображения. Они особенно необходимы также для работы астрономических интерферометров, используемых для измерения размеров звезд и поиска их близких спутников, особенно планет. Системы адаптивной оптики имеют и неастрономические приложения: например, когда требуется наблюдать форму искусственных спутников Земли с целью их опознания. Разработка систем адаптивной оптики началась в 1970-е гг. и приобрела особый размах в 1980-е гг. в связи с программой «звездных войн», включавшей разработку лазерного противоспутникового оружия наземного базирования. Первые штатные системы адаптивной оптики начали работать на крупных астрономических телескопах в районе 2000 г.

На первый взгляд кажется, что исправить атмосферное искажение изображений в принципе невозможно. Откуда мы знаем, каким было исходное изображение и как именно его испортила неоднородная атмосфера? Тем не менее это возможно! Давайте познакомимся с принципом работы этой удивительной системы. Это величайшее достижение оптической астрономии, и оно достойно подробного рассмотрения.

Атмосферные помехи. Идущие от космических источников лучи света, проходя сквозь неоднородную атмосферу Земли, испытывают сильные искажения. Например, волновой фронт света, приходящего от далекой звезды (которую можно считать бесконечно удаленной точкой), на внешней границе атмосферы имеет идеально плоскую форму, но пройдя сквозь турбулентную воздушную оболочку и достигнув поверхности Земли, он становится похож на волнующуюся морскую поверхность. Это приводит к тому, что изображение звезды превращается из «точки» в непрерывно дрожащую и бурлящую кляксу. При наблюдении невооруженным глазом мы воспринимаем это как быстрое мигание и дрожание звезд, а при наблюдении в телескоп вместо «точечной» звезды видим дрожащее и переливающееся пятно; изображения близких друг к другу звезд сливаются и становятся неразличимы по отдельности; протяженные объекты — Луна и Солнце, планеты, туманности и галактики — теряют резкость, у них становятся неразличимыми мелкие детали. Обычно на фотографиях, полученных телескопами, угловой размер мельчайших деталей равен 2—3″, на лучших обсерваториях он изредка составляет 0,5″. Следует иметь в виду, что при отсутствии атмосферных искажений телескоп с объективом диаметром в 1 м дает угловое разрешение около 0,1″, а с объективом в 5 м — 0,02″. Фактически такое высокое качество изображения у обычных наземных телескопов никогда не реализуется из-за искажающего влияния атмосферы.

Пассивный метод борьбы с атмосферными искажениями заключается в том, что обсерватории строят на вершинах гор, обычно на высоте 2—3 км, выбирая при этом места с наиболее прозрачной и спокойной атмосферой. Но строить обсерватории и работать на высоте более 4,5 км практически невозможно. Поэтому даже на самых лучших высокогорных обсерваториях большая часть атмосферы располагается все же выше телескопа и существенно портит изображения.

Роль астронома-наблюдателя. Вообще говоря, задачу «получить изображение лучше, чем позволяет атмосфера», в астрономии решают разными средствами. Исторически, в эпоху визуальных наблюдений в телескоп, астрономы научились внимательно ловить моменты хорошего изображения. В силу случайного характера атмосферных искажений в некоторые мгновения эти искажения на короткое время становятся незначительными, и в изображении проявляются мелкие детали. Наиболее опытные и настойчивые наблюдатели часами караулили эти моменты и смогли таким образом зарисовать очень тонкие детали поверхности Луны и планет, а также обнаружить и измерить очень тесные двойные звезды. Но крайняя необъективность этого метода ярко проявилась в истории с марсианскими каналами: одни наблюдатели их видели, другие — нет.

Применение в астрономии фотопластинок позволило выявить множество новых объектов, недоступных глазу из-за их низкой яркости. Однако фотоэмульсия при слабой освещенности имеет очень малую чувствительность к свету, поэтому в начале XX в. при астрономическом фотографировании требовались многочасовые экспозиции. За это время атмосферное дрожание заметно снижает качество изображения по сравнению с визуальным. Некоторые астрономы пытались бороться с этим явлением, самостоятельно выполняя функции активной и отчасти адаптивной оптических систем. Так, американские астрономы Джеймс Килер (1857—1900) и Вальтер Бааде (1893—1960) регулировали во время экспозиции фокус телескопа, наблюдая с очень большим увеличением (около 3000 раз) форму комы звезды на краю поля зрения. А известный конструктор телескопов Джордж Ричи разработал особую фотокассету на подвижной платформе — так называемую «кассету Ричи», с помощью которой можно быстро выводить фотопластинку из фокуса телескопа, заменяя ее фокусировочным прибором (нож Фуко), а затем возвращать кассету точно в прежнее положение. Во время экспозиции Ричи несколько раз отодвигал кассету, когда чувствовал, что нужно поправить фокус. К тому же Ричи непрерывно наблюдал за качеством изображения и его положением в окуляр, размещенный рядом с кассетой, при этом он постоянно поправлял положение кассеты и научился быстро закрывать затвор, когда изображения становились плохими. Эта работа требовала от астронома очень высокого напряжения, но зато Ричи получил таким способом великолепные фотографии спиральных галактик, на которых впервые стали видны отдельные звезды; эти прекрасные снимки воспроизводились во всех учебниках XX в. Однако широкого применения кассета Ричи не получила ввиду большой сложности работы с ней.

Развитие фото- и видеотехники позволило быстро фиксировать изображение объекта в режиме киносъемки с последующим отбором наиболее удачных изображений. Были разработаны и более тонкие методы апостериорного анализа изображений, например, методы спекл-интерферометрии, позволяющие выявлять в размытом атмосферой пятне расположение и яркость объектов с заранее известными свойствами, таких как «точечные» звезды. Математические методы восстановления изображений также позволяют повышать контраст и выявлять мелкие детали. Но все эти методы неприменимы в процессе наблюдения.

Принципы адаптивной оптики. Запуск на орбиту в 1990 г. оптического телескопа «Хаббл» диаметром 2,4 м и его чрезвычайно эффективная работа в последующие годы доказали большие возможности телескопов, не обремененных атмосферными искажениями. Но высокая стоимость создания и эксплуатации космического телескопа заставила астрономов искать пути компенсации атмосферных помех у поверхности Земли. Появление быстродействующих компьютеров и, не в последнюю очередь, желание военных создать систему космического оружия с лазерами наземного базирования сделали актуальной работу по компенсации атмосферных искажений изображения в реальном времени. Система адаптивной оптики, выравнивая и стабилизируя фронт прошедшего сквозь атмосферу излучения, дает возможность не только получать в фокусе телескопа четкое изображение космического объекта, но и выводить с Земли в космос остро сфокусированный луч лазера. К счастью, военные устройства такого типа реализованы не были, но проделанная в этом направлении работа чрезвычайно помогла астрономам почти полностью реализовать теоретические параметры крупных телескопов по качеству изображения.

Обычно адаптивная система работает совместно с системой активной оптики, поддерживающей конструкцию и оптические элементы телескопа в идеальном состоянии. Действуя совместно, системы активной и адаптивной оптики приближают качество изображения к пре дельно высокому, определяемому принципиальными физическими эффектами (в основном дифракцией света на объективе телескопа).

В принципе системы активной и адаптивной оптики подобны друг другу. Обе они содержат три основных элемента: 1) анализатор изображения, 2) компьютер с программой, вырабатывающей сигналы коррекции, и 3) исполняющие механизмы, изменяющие оптическую систему телескопа так, чтобы изображение стало «идеальным». Количественное различие между этими системами состоит в том, что коррекцию недостатков самого телескопа (активная оптика) можно проводить сравнительно редко — с интервалом от нескольких секунд до 1 минуты, но исправлять помехи, вносимые атмосферой (адаптивная оптика), необходимо значительно чаще — от нескольких десятков до нескольких тысяч раз в секунду. Ясно, что с такой высокой частотой система адаптивной оптики не может изменять форму массивного главного зеркала телескопа и вынуждена управлять формой специального дополнительного легкого и мягкого зеркала, установленного у выходного зрачка телескопа

Реализация адаптивной оптики. Впервые на возможность коррекции атмосферных искажений изображения при помощи деформируемого зеркала указал в 1953 г. американский астроном Хорее Бэбкок (Babcock H.W., 1912—2003). Для компенсации искажений он предложил использовать отражение света от масляной пленки, поверхность которой деформируется электростатическими силами. Тонкопленочные зеркала с электростатическим управлением разрабатываются для аналогичных целей и в наши дни, хотя более популярным исполнительным механизмом служат пьезоэлементы с зеркальной поверхностью.

Плоский фронт световой волны, пройдя сквозь атмосферу, искажается и вблизи телескопа имеет довольно сложную структуру. Для характеристики искажения обычно используют параметр r0 — радиус когерентности волнового фронта, определяемый как расстояние, на котором среднеквадратическая разность фаз достигает 0,4 длины волны. В видимом диапазоне, на волне длиной 500 нм, в подавляющем большинстве случаев r0 лежит в интервале от 2 до 20 см; условия, когда r0=10 см, нередко считаются типичными. Угловое разрешение крупного наземного телескопа, работающего через турбулентную атмосферу с применением длительной экспозиции, равно разрешению идеального телескопа диаметром r0, работающего вне атмосферы. Поскольку значение r0 возрастает приблизительно пропорционально длине волны излучения (r0 ∞ λ6/5), атмосферные искажения в инфракрасном диапазоне существенно меньше, чем в видимом.

Для небольших наземных телескопов, диаметр которых сравним с r0, можно считать, что в пределах объектива волновой фронт плоский и в каждый момент времени наклонен случайным образом на некоторый угол. Наклон фронта соответствует смещению изображения в фокальной плоскости, или, как говорят астрономы, дрожанию (в физике атмосферы принят термин «флуктуации угла прихода»). Для компенсации дрожания в таких телескопах достаточно ввести плоское управляемое зеркало, наклоняющееся по двум взаимно перпендикулярным осям. Опыт показывает, что такое простейшее исполнительное устройство в системе адаптивной оптики малого телескопа весьма существенно повышает качество изображения при длительных экспозициях.

У телескопов большого диаметра (D) на площади объектива укладывается порядка (D/r0)² квазиплоских элементов волнового фронта. Этим числом и определяется сложность конструкции компенсирующего зеркала, т. е. количество пьезоэлементов, которые, сжимаясь и расширяясь под действием управляющих сигналов, с высокой частотой (до тысяч герц) изменяют форму «мягкого» зеркала. Нетрудно оценить, что на крупном телескопе (D = 8—10 м) полное исправление формы волнового фронта в оптическом диапазоне потребует корректирующего зеркала с (10 м/10 см)² = 10 000 управляемых элементов. При нынешнем развитии систем адаптивной оптики это практически невыполнимо. Однако в близком инфракрасном диапазоне, где значение r0 = 1 м, корректирующее зеркало должно содержать около 100 элементов, что вполне достижимо. Например, система адаптивной оптики «Интерферометра Очень большого телескопа» (VLTI) Европейской южной обсерватории в Чили имеет корректирующее зеркало из 60 управляемых элементов.

Для выработки сигналов, управляющих формой корректирующего зеркала, обычно анализируется мгновенное изображение яркой одиночной звезды. В качестве приемника используется анализатор волнового фронта, размещенный у выходного зрачка телескопа. Сквозь матрицу из множества небольших линз свет звезды попадает в ПЗС-камеру, сигналы которой оцифровываются и анализируются компьютером. Управляющая программа, изменяя форму корректирующего зеркала, добивается того, чтобы изображение звезды имело идеально «точечный» вид. По сути, в этом-то и заключается главная идея астрономической системы адаптивной оптики: нам заранее известно, каким в идеальном телескопе должно быть изображение звезды! Звезда должна выглядеть точкой (точнее, маленьким дифракционным кружочком). Искривив мягкое зеркало так, чтобы изображение звезды стало точкой, мы сделаем четкими и изображения всех соседних с ней объектов!

Эксперименты с системами адаптивной оптики начались в конце 1980-х гг., а к середине 1990-х гг. уже были получены весьма обнадеживающие результаты. Одним из первых телескопов, на которых тестировалась система компенсации атмосферных искажений, в 1992 г. стал уже знакомый нам старенький 60-дюймовый «Хейл» обсерватории Маунт-Вилсон. 69-канальная система адаптивной оптики позволила повысить его угловое разрешение с 0,5—1,0″ до 0,07″. С 2000 г. практически на всех крупных телескопах используются такие системы, позволяющие довести угловую разрешающую способность телескопа до его физического (дифракционного) предела. В конце ноября 2001 г. система адаптивной оптики начала работать на 8,2-метровом телескопе «Йепун» (VLT, Чили). Это существенно улучшило качество наблюдаемой картины: теперь угловой диаметр изображений звезд составляет 0,07″ в спектральном диапазоне K (2,2 мкм) и 0,04″ в диапазоне J (1,2 мкм).

Искусственная звезда. Для быстрого анализа изображения в системе адаптивной оптики используется опорная звезда, которая должна быть весьма яркой, поскольку ее свет делится анализатором волнового фронта на сотни каналов и в каждом из них регистрируется с частотой около 1 кГц. К тому же яркая опорная звезда должна располагаться на небе вблизи изучаемого объекта. Однако в поле зрения телескопа далеко не всегда встречаются подходящие звезды: ярких звезд на небе не так много, поэтому до недавних пор системам адаптивной оптики были доступны наблюдения лишь 1% небосвода — маленькие площадки вокруг ярких звезд. Чтобы снять это ограничение, было предложено использовать искусственный «маячок», который располагался бы вблизи изучаемого объекта и помогал зондировать атмосферу.

Эксперименты показали, что для работы активной оптики очень удобно при помощи специального лазера создавать в верхних слоях атмосферы искусственную звезду (Laser Guide Star, LGS) — маленькое яркое пятно, постоянно присутствующее в поле зрения телескопа. Как правило, для этого используется лазер непрерывного действия с выходной мощностью в несколько ватт, настроенный на частоту резонансной линии натрия (например, на линию D2Na). Его луч фокусируется в атмосфере на высоте около 90 км, там, где присутствует естественный слой воздуха, обогащенный натрием, свечение которого как раз и возбуждается лазерным лучом. Физический размер светящейся области составляет около 1 м, что с расстояния в 100 км воспринимается как объект с угловым диаметром около 1″. Например, в системе ALFA (Adaptive optics with Laser For Astronomy), разработанной в Институте внеземной физики и Институте астрономии Общества им. Макса Планка (Германия) и пущенной в опытную эксплуатацию в 1998 г., аргоновый лазер накачки мощностью 25 Вт возбуждает лазер на красителях выходной мощностью 4,25 Вт, который и дает излучение в линии D2 натрия. Это устройство создает искусственную звезду с визуальным блеском 9—10m. Правда, появление в атмосфере аэрозоля или наблюдение на больших зенитных расстояниях существенно снижают блеск и качество искусственной звезды.

Поскольку луч мощного лазера способен ночью ослепить пилота самолета, астрономы принимают меры безопасности. Видеокамера с полем зрения 20° следит через тот же телескоп за областью неба вокруг искусственной звезды и при появлении любого объекта выдает команду на заслонку, перекрывающую лазерный луч.

Создание в конце XX в. систем адаптивной оптики открыло новые перспективы перед наземной астрономией: угловое разрешение крупных наземных телескопов в видимом диапазоне вплотную приблизилось к возможностям космического телескопа «Хаббл», а в близком инфракрасном диапазоне даже заметно превысило их. К тому же разработка адаптивной оптики сделала возможным строительство наземных оптических интерферометров на базе телескопов большого диаметра. Дело в том, что после прохождения светового луча через атмосферу он теряет когерентность, и работа интерферометра становится невозможной. Поэтому наземные интерферометры без системы адаптивной оптики работать не могут. Благодаря созданию этих систем уже вступают в строй крупные оптические интерферометры, которые будут способны не только обнаруживать, но даже исследовать планеты у других звезд.

Утверждение, что теперь все астрономические наблюдения можно проводить из космоса, не выдерживает критики, поскольку не имеет смысла делать за большие деньги в космосе то, что можно значительно дешевле сделать на Земле. Четыре десятилетия космической астрономии показали, что с орбиты нужно наблюдать лишь то, что недоступно на Земле. Большую часть оптических и радионаблюдений с успехом можно проводить из наземных обсерваторий, если не создавать им препятствий в работе.

Обсудив замечательные технические возможности и перспективы наземной астрономии, мы должны коснуться еще одной, «нетехнической» проблемы — как выбрать на дне нашего воздушного океана наилучшее место для строительства телескопа. Казалось бы, самое желанное место для установки телескопа — вершина Эвереста, но почему-то никто из астрономов туда не стремится. Вкладывая большие деньги в строительство телескопов, астрономы придирчиво выбирают места для сооружения обсерваторий, предъявляя к ним массу противоречивых требований. Среди них есть вполне понятные — экономические. Место строительства крупного телескопа должно быть доступным для большегрузных автомобилей, перевозящих массивные части телескопа и его зеркало. Желательно, чтобы невдалеке проходили морские или речные пути. При этом желательно избегать сейсмически активных областей, хотя это редко удается. Учитывая высокую стоимость больших телескопов, их стараются размещать в политически стабильных странах. Но все же главными требованием при выборе места является требование к его астроклимату. Астрономический климат? Оказывается, есть и такой!

Предыдущая страница К оглавлению Следующая страница

«Кабинетъ» — История астрономии. Все права на тексты книг принадлежат их авторам!
При копировании материалов проекта обязательно ставить ссылку